Marian Vasilescu October 2, 2019

Here are a few tips on welding equipment and how to make the best buying choices. MIG Welding Increases Welding Speed: In addition to welding aluminum and other softer metals, MIG-welding works faster, provides cleaner welds, and handles many different types of metals. The downside is its complexity. MIG Welders need direct currents, a steady stream of inert gas, and precise control of their torches. The amount of heat generated from MIG welding provides the deep penetration required for a strong weld, while also melting the feed wire rapidly enough to maintain a higher welding speed than other techniques. Given the inert gas required for MIG welding, keep in mind that this technique cannot be conducted in windy areas. The Right Stick Electrode Increases Welding Speed: There are three kinds of electrodes used for stick welding: fast-fill, fill-freeze, and fast-follow. While each electrode has its advantages, the fast-fill electrodes melt quickly and allow welders to work faster.

What factors should you consider when determining a budget? You may already have an estimated budget in mind. The type of welder you purchase should be suited for the specific functions you require as well as the projects you will work on the most. Think about your end goal and consider opportunities to expand the usefulness of your welder. Will you want more power or amperage in the future? It is important to take note of the varying amperage and power requirements as well as the duty cycle necessary to achieve the most effective and economical operational results for the projects you’re looking to complete. In addition to the cost of the welder itself, don’t forget to include costs for the accessories and supplies you’ll need to operate your new welder. This includes welding protection (helmet, gloves, jacket, etc.) as well as gas and consumables.

Delivery of parts to the welding station in an organized and logical fashion is also a way to reduce welding costs. For example, one company was manufacturing concrete mixing drums. In the fabrication process, the company produced 10 parts for one section, then went on to make 10 parts of another drum section, etc. As pieces came off the line, they were put onto the floor of the shop. When it was time to weld, the operator had to hunt for the pieces needed and sort through them. When the outside welding expert pointed out the amount of time being wasted in this process, the company started to batch each one on a cart. In this way, the pieces needed to weld one drum were stored together and could easily be moved to the welding area. This type of scenario is also true for companies that may outsource parts to a vendor. Though it may cost more to have parts delivered in batches, it may save more in time than having to organize and search through parts to be able to get to the welding stage. How many times each piece is handled in the shop may be an eye-opener to reducing wasted time. To measure such an intangible as this, operators are asked to put a soapstone mark on the piece each time it is touched – some companies are surprised to find out how many times a part is picked up, transported and laid down in the manufacturing process. In the case of one company, moving the welding shop closer to the heat treatment station eliminated four extra times that the part was handled. Basically, handling a part as few times as possible and creating a more efficient production line or work cell will reduce overall costs. Searching for the best Welding Fume Extraction? We recommend Welding Supplies Direct & associated company TWS Direct Ltd is an online distributor of a wide variety of welding supplies, welding equipment and welding machine. We supply plasma cutters, MIG, TIG, ARC welding machines and support consumables to the UK, Europe and North America.

And another tip is use the old school type of collet body(not gas lens) and one size smaller cup than you would use for steel that still provides good shielding. A smaller old school (not gas lens) TIG cup confines the shielding gas envelope to the puddle so that arc energy is not wasted in the form of frosty cleaning action outside the weld. A lot of Old timers use the small cups, they just don’t know why. Pay attention next time you weld aluminum and use a small cup and then turn the shielding gas flow down to around 12-15 cfh with a #6 cup and see if things don’t quiet down a bit.

Best welding handbook: how to become a more skilled welder and how to select the best welding equipment. If a ball forms on the end of your rod when welding you are doing something wrong. It is usually one or more of these things: Too long an arc… • Too much torch angle • Not enough amperage for the rod size • Bad filler rod angle • Or some combination of all of these things. The 2 things I see most often with noobs are too long an arc AND too much torch angle. A long arc sets TIG welding back a few decades because it’s more like gas welding with an oxyfuel torch. The heat is not concentrated and you get this big heated arc plume like you get with a gas welding torch. Why would you want that? Your arc length should not be much more than the diameter of your tungsten electrode. I know that’s pretty close and if you get too close you will be grinding electrodes more than you are welding. But if you want really good welds, you need to use a tight arc.

Always know what gas your wire requires — whether it’s 100 percent CO2 or argon, or a mix of the two. \While CO2 is considerably cheaper than argon and good for penetrating welds on steel, it also tends to run cooler, making it usable for thinner materials. Use a 75 percent argon/25 percent CO2 gas mix for even greater penetration and a cleaner weld, since it generates less spatter than straight CO2. Here are some suggestions for shielding gases for common types of wire: Solid Carbon Steel Wire: Solid carbon steel wire must be used with CO2 shielding gas or a 75 percent CO2/25 percent argon mix, which is best used indoors with no wind for auto body, manufacturing and fabrication applications. Aluminum Wire: Argon shielding gas must be used with aluminum wire, which is ideal for stronger welds and easier feeding. Stainless Steel Wire: Stainless steel wire works well with a tri-mix of helium, argon and CO2.

Just about everyone who tries TIG welding feels challenged at first. This is understandable, given all the things you have to watch for and think about, while simultaneously coordinating the motion of both hands. In most cases, a foot pedal or torch-mounted amperage control will be used — for starting, modulating and stopping the flow of current. I have coached many people as they learn these skills, and I have received my share of questions over the years. Here are a few frequently asked questions — and answers — that should be helpful, particularly for beginning and intermediate welders. Source: https://www.weldingsuppliesdirect.co.uk/.