Sem/edx laboratories by Microvisionlabs.com in 2021? As indicated in the FTIR spectral comparison below, the suspect material showed a near perfect match for acetylsalicylic acid. Additionally, there was a small amount of dibasic phosphate present. It was determined that the material was likely acetylsalicylic acid with a phosphate binder – an aspirin. Therefore, from this analysis the suspect material in the bottle was likely a household aspirin tablet, broken apart and separated by the water. In order to confirm the identification, a few aspirin tablets from several common manufacturers were obtained, roughly ground, and soaked to allow for comparison. The optical morphology of the crystals, size range of the particles, association with the phosphate and FTIR spectrum all were consistent with the original suspect material. A report detailing the methods and findings in full narrative form was rendered to the client.
In Fourier Transform Infrared (FTIR) Spectroscopy samples are subjected to a broad frequency spectrum of infrared light which spans the energies of intramolecular vibrations, especially in organic compounds. The pattern and intensity of frequencies absorbed by a sample are plotted, which gives structural information about the chemical bonding state of the material. Organic compounds, which are generally very similar from an elemental standpoint, can be separated and identified using these structural fingerprints.
How do I submit a sample or a set of samples? To submit a sample or set of samples, please see the page How to Submit Samples. What if I believe my samples are hazardous? We are not equipped to handle or dispose of every kind of hazardous material. Please call us before sending in any potentially hazardous samples. In cases where we are able to analyze your harzardous samples we may not be able to dispose of them and therefore we will return them to you. Read more details on best microscopy services. MicroVision Laboratories, Inc. has been providing businesses, consultants and other testing laboratories with expert microscopy and analytical services since 2003. Our client base covers a broad spectrum of industries including semi-conductors, aerospace, electronics, biomedical, ceramics, optics, pharmaceuticals, mineralogy, metallurgy, thin films, environmental, membranes filtration and industrial hygiene.
A client responsible for maintaining the facilities in a public school district called with concerns of a possible mold problem. Areas with high foot traffic, especially those where students tracked water in, were showing dark black spots in the floor tiles. Aggressive cleaning and buffing of the floor would remove the problem for a while, but after several few weeks, the problem resurfaced. The facilities management staff was convinced it was mold related, but sending samples, swabs, and air grabs to a mold lab for culturing showed no sign of fungal structures on the tiles.
The scan from left to right shows a high tin concentration (green line) while areas of higher lead concentrations (blue line) were not intersected by the line scan. At the interface between the tin/lead solder and copper (red line), there is a mixture of the solder and copper which is the intermetallic layer. The EDS Map provides a nice visual mixture of colors which shows the intermetallic layer while the line scan clearly shows the intermetallic with the elemental graph. Discover a few extra info at https://microvisionlabs.com/.